ANALISIS MODEL KLASIFIKASI DENGAN OPTIMASI PARTICLE SWARM OPTIMIZATION DALAM KLASIFIKASI STATUS GIZI ANAK
Abstract
Abstract: Nutritional status represents a state of equilibrium in the form of specific variables or the manifestation of nutrition in the form of specific variables. Optimal nutritional status is achieved when there is a balance between nutrient intake and nutrient requirements. Malnutrition not only affects an individual's physical health but also negatively impacts their overall development and well-being. However, data warehouses related to child nutritional status in Asahan Regency from various community health centers (Puskesmas) have not been optimally utilized to generate valuable information. Therefore, the purpose of this study was to analyze child nutrition datasets using a machine learning-based classification model that can predict children's nutritional status early. The classification model was chosen because of its ability to group data or objects based on specific classes, making it suitable for future data prediction. Based on the results, it can be concluded that optimizing the toddler nutritional status classification model using the Particle Swarm Optimization (PSO) method and cross-validation was able to identify the best model, namely the Decision Tree, with an accuracy of 37.50%. Although the overall accuracy of all models was still relatively low. This indicates the need for further data processing, such as data balancing, selecting more relevant features, and further parameter tuning to improve classification performance.
Keywords: Classification; Particle_Swarm Optimization; Cross Validation, Nutritional Status
Abstrak: Status gizi adalah representasi dari keadaan keseimbangan dalam bentuk variabel tertentu atau manifestasi nutrisi dalam bentuk variabel tertentu, di mana status gizi optimal dicapai ketika terjadi keseimbangan antara asupan dan kebutuhan zat gizi. Gizi buruk tidak hanya memengaruhi kesehatan fisik individu, tetapi juga berdampak negatif pada perkembangan dan kesejahteraan mereka secara keseluruhan. Akan tetapi, gudang data yang terkait status gizi anak di Kabupaten Asahan dari berbagai puskesmas belum dimanfaatkan dengan optimal untuk menghasilkan informasi yang berharga. Oleh karena itu, tujuan dari penelitian ini adalah untuk menganalisis dataset gizi anak menggunakan model klasifikasi berbasis machine learning yang dapat memprediksi status gizi anak secara dini. Model klasifikasi dipilih karena kemampuannya dalam mengelompokkan data atau objek berdasarkan kelas tertentu, sehingga cocok untuk prediksi data di masa depan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa optimasi model klasifikasi status gizi balita menggunakan metode Particle Swarm Optimization (PSO) dan cross validation mampu mengidentifikasi model terbaik, yaitu Decision Tree dengan akurasi 37,50%, meskipun secara umum tingkat akurasi seluruh model masih relatif rendah. Hal ini menunjukkan perlunya pengolahan data lebih lanjut, seperti balancing data, pemilihan fitur yang lebih relevan, maupun tuning parameter lanjutan untuk meningkatkan performa klasifikasi.
Kata kunci: Klasifikasi; Particle Swarm Optimization; Cross Validation, Status Gizi
Full Text:
PDFReferences
Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor , Genetic , Support Vector Machine , Decision Tree , and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, 3(May), 100071. https://doi.org/10.1016/j.dajour.2022.100071
Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable selection for Naïve Bayes classification. Computers and Operations Research, 135, 105456. https://doi.org/10.1016/j.cor.2021.105456
Dewi, S. P., Nurwati, N., & Rahayu, E. (2022). Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 3(4), 639–648. https://doi.org/10.47065/bits.v3i4.1408
Dita Anggraeni, Nur Rochimah, A. D. (2024). Pengaruh pemberian makanan junk food terhadap kualitas gizi anak usia 4-5 tahun di kecamatan kota baru. PeTeKa (Jurnal Penelitian Tindakan Kelas Dan Pengembangan Pembelajaran), 7(1), 41–48. Retrieved from http://jurnal.um-tapsel.ac.id/index.php/ptk/article/view/13883
Gad, A. G. (2022). Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering (Vol. 29). Springer Netherlands. https://doi.org/10.1007/s11831-021-09694-4
Hamed, Y., Ibrahim Alzahrani, A., Shafie, A., Mustaffa, Z., Che Ismail, M., & Kok Eng, K. (2020). Two steps hybrid calibration algorithm of support vector regression and K-nearest neighbors. Alexandria Engineering Journal, 59(3), 1181–1190. https://doi.org/10.1016/j.aej.2020.01.033
Haris, A., Amri, M., Sunan, U. I. N., & Yogyakarta, K. (2024). Peran Zakat dalam Mengatasi Stunting dan Gizi Buruk di Kabupaten Brebes. Jurnal Mabsya, 6(1), 1–30. https://doi.org/10.24090/mabsya.v6i1.10706
Hasrul, H., Hamzah, H., & Hafid, A. (2021). Pengaruh Pola Makan Terhadap Status Gizi Anak Sekolah Dasar. Jurnal Keperawatan Muhammadiyah, 1(1), 54–59. https://doi.org/10.33096/fmj.v1i1.9
Jen, L., & Lin, Y. (2021). A Brief Overview of the Accuracy of Classification Algorithms for Data Prediction in Machine Learning Applications. Journal of Applied Data Sciences, 2(3), 84–92. https://doi.org/https://doi.org/10.47738/jads.v2i3.38
Križanić, S. (2020). Educational data mining using cluster analysis and decision tree technique: A case study. International Journal of Engineering Business Management, 12, 1–9. https://doi.org/10.1177/1847979020908675
Misra, P., & Yadav, A. S. (2020). Improving the Classification Accuracy using Recursive Feature Elimination with Cross-Validation 1. International Journal on Emerging Technologies 11(3):, 11(3), 659–665. Retrieved from http://www.puneetmisra.com/admin/uploads/journals/5f136d202b8ba1.18644117.pdf
Permana, B. A. C., Ahmad, R., Bahtiar, H., Sudianto, A., & Gunawan, I. (2021). Classification of diabetes disease using decision tree algorithm (C4.5). Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012082
Piotrowski, A. P., Napiorkowski, J. J., & Piotrowska, A. E. (2020). Population size in Particle Swarm Optimization. Swarm and Evolutionary Computation, 58(March 2019), 100718. https://doi.org/10.1016/j.swevo.2020.100718
Ramon, E., Nazir, A., Novriyanto, N., Yusra, Y., & Oktavia, L. (2022). Klasifikasi Status Gizi Bayi Posyandu Kecamatan Bangun Purba Menggunakan Algoritma Support Vector Machine (Svm). Jurnal Sistem Informasi Dan Informatika (Simika), 5(2), 143–150. https://doi.org/10.47080/simika.v5i2.2185
Sarker, I. H. (2021). Machine Learning : Algorithms , Real ‑ World Applications and Research Directions. SN Computer Science, 2(3), 1–21. https://doi.org/10.1007/s42979-021-00592-x
Setiawan, H. B., & Pria Utama, G. (2022). Klasifikasi Status Gizi Balita Menggunakan Metode Naïve Bayes Classifier. Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, (September), 707–715. Retrieved from http://senafti.budiluhur.ac.id/index.php/senafti/article/view/301
Setiawan, R., & Triayudi, A. (2022). Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web. Jurnal Media Informatika Budidarma, 6(2), 777. https://doi.org/10.30865/mib.v6i2.3566
Sheth, V., Tripathi, U., & Sharma, A. (2022). A Comparative Analysis of Machine Learning Algorithms for Classification Purpose Application Analysis of Machine Learning Algorithms for. Procedia Computer Science, 215, 422–431. https://doi.org/10.1016/j.procs.2022.12.044
DOI: https://doi.org/10.54314/jssr.v8i4.4247
Article Metrics
Abstract view : 3 timesPDF - 0 times
Copyright (c) 2025 Nurwati Nurwati, Rika Nofitri, Diana Selvi


